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The Kuramoto phase-diffusion equation is a nonlinear partial differential equation which describes the
spatiotemporal evolution of a phase variable in an oscillatory reaction-diffusion system. Synchronization mani-
fests itself in a stationary phase gradient where all phases throughout a system evolve with the same velocity,
the synchronization frequency. The formation of concentric waves can be explained by local impurities of
higher frequency which can entrain their surroundings. Concentric waves in synchronization also occur in
heterogeneous systems, where the local frequencies are distributed randomly. We present a perturbation analy-
sis of the synchronization frequency where the perturbation is given by the heterogeneity of natural frequencies
in the system. The nonlinearity in the form of dispersion leads to an overall acceleration of the oscillation for
which the expected value can be calculated from the second-order perturbation terms. We apply the theory to
simple topologies, like a line or sphere, and deduce the dependence of the synchronization frequency on the
size and the dimension of the oscillatory medium. We show that our theory can be extended to include rotating
waves in a medium with periodic boundary conditions. By changing a system parameter, the synchronized state
may become quasidegenerate. We demonstrate how perturbation theory fails at such a critical point.
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I. INTRODUCTION

The formation of spatiotemporal patterns is ubiquitous in
natural and artificial complex dynamical systems �1–3�. In
oscillatory media pattern formation is tightly connected to
the process of synchronization and plays an important role in
a variety of systems far from equilibrium, such as arrays of
Josephson junctions �4�, the Beluzov-Zhabotinsky reaction
�5,6�, cardiac tissue �7�, neural systems �8�, and spatially
extended ecological systems �9–11�. Different mechanisms
for pattern formation are known. One of these is the interplay
between attractive interaction—e.g., diffusion—which medi-
ates long-range correlations, and heterogeneity, or disorder,
driving the system away from a uniform state. However,
while large spatial heterogeneity is present in most natural
and biological systems, not much about the pattern formation
and synchronization in disordered oscillatory media is
known.

Synchronization in the sense of a mutual adjustment of
internal frequencies �12� does not necessarily imply a total
reduction of the system dimension to that of a single
component—i.e., completely uniform dynamics. Instead,
even in the synchronized state parameters like phase can
vary across the system while the phase differences remain
bounded or locked. In that case one can define waves that
travel along a phase gradient �13�. If the wavelength is
smaller than the diameter of the system, these waves are
perceived as time-periodic spatial patterns. Such waves are a
prominent feature in regular low-dimensional reactor topolo-
gies of chemical oscillating reaction-diffusion systems �6�.
Wave propagation in oscillatory systems, although experi-
mentally more difficult to assess, is also observed and of
much relevance in a biological, medical, ecological, and epi-
demiological context �7,9,10,14�.

Beside spiral waves and turbulence, concentric ring wave
patterns are one of the most prominent features in two-

dimensional oscillatory media. They are usually associated
with the presence of local impurities in the system �1,5�.
These pacemakers change the local oscillation frequency and
are able to entrain their surroundings, which finally results in
regular ring or target patterns. However, concentric waves of
surprising regularity occur also in heterogeneous systems,
where the local frequencies are distributed randomly. This
was first reported and explained in �15� and subsequently
also observed in chaotic phase-coherent systems �9–11�. In
�16� it was shown that a phenomenological description can
be obtained with phase equations using the Kuramoto model
�1�. The analysis revealed that the random nature of the me-
dium itself plays a key role in the formation of the patterns.
In order to utilize or control these patterns, in general, it will
not be sufficient to understand the mechanisms leading to
pattern formation. Of equally importance is a knowledge of
the time and length scales involved �17�. However, in disor-
dered systems no analytic formula for such quantities, let
alone a full phase profile, is known. Here we show how
estimations can be obtained by perturbation theory.

The objective of this paper is to derive first- and second-
order perturbation terms for the synchronization frequency in
the nonlinear Kuramoto phase-diffusion equation �KPDE�
given a time-independent distribution of frequencies in the
system. We present two approaches to this problem. The first
approach, as described in Sec. II, is based on a direct pertur-
bation expansion of the KDPE. It includes as a special case,
for vanishing nonlinearity, the exactly solvable situation of
the inhomogeneous heat equation. The second approach pre-
sented in Sec. III is based on a Cole-Hopf transformation of
the KPDE to a stationary Schrödinger equation for a particle
in a disordered potential. Here, classical Schrödinger pertur-
bation theory can be applied and leads to the same expres-
sions as the first approach. We extend the second approach to
describe variations in systems with topological charges. Such
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solutions exist for system topologies with periodic boundary
conditions. In Sec. IV we apply the theory to simple topolo-
gies and calculate the first- and second-order perturbation
terms of the synchronization frequency at the example of a
d-dimensional medium with topological charges and also for
the two-dimensional surface of a sphere. Throughout we
confirm our analytic results by direct numerical simulations.
We deduce the dependence of the synchronization frequency
on the size and the dimension of the oscillatory medium and
demonstrate that the second-order perturbation term changes
its scaling behavior at the critical dimension d=2. Below that
dimension it diverges with system size and for d�2 it di-
verges for small frequency correlation lengths. Finally, in
Sec. V, we take a look at regimes which cannot be described
by perturbation theory. In particular, we observe a discon-
tinuous change of the location of a dominant pacemaker cen-
ter.

Let us start by reviewing the nonlinear phase-diffusion
equations �1�. A heterogeneous oscillatory reaction-diffusion
system may be described by its full dynamics

Ẋ = F�X,r� + �2DX�r� , �1�

where F�X ,r� describes an oscillatory nonequilibrium reac-
tion at a position r given the vector of reactant concentra-
tions X and the diffusion �2DX�r� in the system, where D is
a diagonal matrix of diffusion coefficients and the second-
order spatial derivative �2 has to be applied componentwise.
Here we always assume that the local dynamics at the differ-
ent locations are stable limit-cycle oscillations. If the diffu-
sive coupling only leads to small deviations from these limit
cycles and if the medium is locally isotropic, the system can
be reduced �2� to the dynamics of phases ��r� of the form

�̇�r� = ��r� + �2��r� + �����r��2. �2�

These simplified phase equations define the nonlinear
KPDEs. They were introduced by Kuramoto and co-workers
in 1976 �18� and are obtained by the perturbative method of
phase reduction, using averaging techniques, described in his
seminal monograph from 1984 �1�. Here, ��r� is the local
natural frequency of oscillation, we have used a scaling of
time to make the diffusion coefficient in front of the Laplac-
ian differential operator equal to 1 and the parameter � con-
trols the nonlinearity, or dispersion. It can directly be inter-
preted as the nonisochronicity, which is the shear rate of the
phase flow near the limit cycle and describes the sensitivity
of the phase velocities to changes in the oscillation amplitude
�1�.

The heterogeneity in the system may be parametrized by
the sample variance

�2 = ��2�system − ���system
2 �3�

or some norm of the two-point correlation function C�r ,r��
if the frequencies are random �but quenched�—e.g.,

E���r���r��� − E���2 = �2C�r,r�� with �C� = 1. �4�

For the phase equations �2� to be applicable to the problem,
Eq. �1�, the relaxation time of the amplitudes must be small
compared to the time scale of the phase evolution �2�. In the

following we define �=�� with normalized frequencies �
and use � as a parameter of the system. Note that after the
scaling of time, � is a dimensionless quantity measuring the
ratio between the statistical frequency dispersion and the
time scale of the spatial diffusion. It is not directly associated
with the mean frequency in the system which in the KPDE
and in a corotating frame of reference can be chosen arbi-
trarily.

For a simulation of the KPDE �2� on a discretization of
the medium, it is of advantage to use the discrete Kuramoto
model �1�

�̇n = �n + �
m

Anm sin��m − �n� + Bnm��1 − cos��m − �n�� ,

�5�

where the Laplacian of the medium is defined through the
values Anm and the square absolute value of the gradient
through the choices of Bnm. On a square lattice with nearest
neighbor coupling of spacing h, we have Anm=Bnm=h−2 for
adjacent grid points.

II. PERTURBATION APPROACH 1

In synchronization the phase velocities of Eq. �2� have
adapted to a common frequency

�̇�r� = � = ���r� + �2��r� + �����r��2, �6�

and with d
dt ��=��̇=0, the phase gradient becomes station-

ary. In a homogeneous system, without disorder �=0, the
constant phase profile ��r�=�0=0 solves the KPDE in syn-
chronization, Eq. �6�, with �=�0=0. In contrast, in the pres-
ence of heterogeneity ��0 it is hard to obtain the stationary
phase profile because the synchronization frequency is not
known and must be calculated self-consistently �16�. Here
we follow a perturbation approach by expanding in powers
of a small disorder �. Thereby, as will be shown below,
nontrivial results are obtained in the second order.

Given the normalized frequencies ��r�, it is possible to
derive the perturbation series

���� = ���1� + �2��2� + O��3� �7�

directly by inserting the ansatz

� = ���1� + �2��2� + O��3� �8�

into Eq. �6� and regrouping terms according to powers of �:

� = �
j=1

�

� j�L��j� + b�j�� . �9�

Here, L=�2 is the Hermitian, Laplacian operator, ��j� is the
perturbation term of order j in Eq. �8�, and the functions b�j�

are given by

b�1��r� = ��r� ,

b�2��r� = �����1��r��2,
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b�j�1��r� = ��
i=1

j−1

� ��i� � ��j−i�. �10�

To proceed, it is convenient to expand into eigenfunctions of
the Laplacian L. For a medium of finite volume and appro-
priate boundary conditions, the eigenvalues Ek of L are dis-
crete. With the orthonormal eigenfunctions pk of the Laplac-
ian and using the inner product of complex functions f and g
defined for all positions r�M of the medium

�f† · g� = 	
M

dr f*�r�g�r� , �11�

we can define the projectors

P0 = p0p0
† and Q0 = I − P0, �12�

with the identity operator I and the constant function p0�r�
=1 /
�M�, which is the normalized eigenfunction of L to the
eigenvalue E0=0. The operator Q0 removes, in fact, the av-
erage from a function. Applying these operators to Eq. �9�,
we obtain

��j� = P0b�j�, �13�

0 = L��j� + Q0b�j�. �14�

The inverse operator of L in the image space of Q0 is

L−1 = �
k�0

1

Ek
pkpk

†. �15�

We can thus solve Eq. �14� and find the perturbation terms
��j� up to a constant phase shift as

��j� = − �
k�0

�pk
† · b�j��
Ek

pk. �16�

Equations �10�, �13�, and �16� can be iterated to obtain the
full perturbation series �7� and �8� up to arbitrary order. Us-
ing the identities

�pk
†�† · �pk�� = − Ek	kk�, �17�

�pk
† · ����† · pk�� = �k�k�, �18�

we find for the first- and second-order perturbation terms of
the synchronization frequency

��1� = ���system, �19�

��2� = − �
1

�M� �k�0

�k
2

Ek
. �20�

The coefficients �k
2 are the square amplitudes of the kth spa-

tial Fourier modes of the frequencies, with respect to the
system Laplacian. For k�0 these values do not depend on
the mean value of ��r�. Note that for isochronous oscilla-
tions �=0 the terms ��j�1�=0 are zero and the phase profile
in synchronization is given exactly by �=���1� and Eqs.
�10� and �16�. In that case, the phase diffusion equation �2� is
linear and readily solved in the Fourier space.

III. PERTURBATION APPROACH 2

In this section we will rederive Eqs. �19� and �20� from a
different point of view and in a somewhat more general
form. It is well known that a nonlinear Cole-Hopf transfor-
mation

��r� =
1

�
ln p�r� �21�

changes the KPDE �6� into a linear equation

��p�r� = �����r� + �2�p�r� = − Hp�r� �22�

for the ground state p0�r�= p�r� of a Hamiltonian H with
diagonal disorder, given by the frequencies −����r� and
ground-state energy −�� �see, e.g., �1,15��. Considering the
frequencies ��r� a perturbation of strength 
=��,
Schrödinger perturbation theory will give exactly the same
results for the synchronization frequency as obtained in the
previous section, Eqs. �19� and �20�. However, as will be
shown below, the stationary Schrödinger equation is only
one from a family of linear problems which are equivalent to
the KPDE.

To understand this, notice that there are two pitfalls to the
transformation, Eq. �21�. First, it is only defined for nonva-
nishing values ��0. And second, since the ground state
p0�r�=1 /
�M� of the unperturbed system, Eq. �22�, is
unique, one is tempted to believe that the same is true for the
homogeneous phase profile ��=const� of identical oscillators
in synchronization. However, this is not necessarily the case
because the phases ��r� are elements of a circle, while p�r�
is a real number. If the phase changes along a closed path
from zero to a multiple of 2�, it is a continuous function on
this curve, while p is necessarily discontinuous. Indeed, for
periodic boundary conditions multiple stable synchronized
states can exist �19� �we will give examples for such inho-
mogeneous solutions in the next section�.

We will therefore not take �0�r�=0 as in the previous
section, but instead assume a general phase profile �0�r� in
stable synchronization. It is always possible to divide the
phases formally into a time-independent gauge field �0 and a
time-dependent deviation � from that gauge field, ��r , t�
=�0�r�+��r , t�. This corresponds to local rotations; i.e., the
gauge field �0�r� defines a position-dependent choice of the
coordinate frame and yields new phases ��r�, so that �=0
where in the old frame �=�0. Assuming

�0�r� = �2�0 + ����0�2, �23�

the KPDE of the full heterogeneous system in synchrony
takes the new form

� = ��r� + �0�r� + �2� + 2� � � � � + �����2 �24�

and the gauge modified Laplacian reads

L = 2� � �0 � + �2. �25�

After the Cole-Hopf transformation ��r�= 1
� ln p�r�, we find

the eigenvalue problem
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��p = �����r� + �0�r� + 2� � �0 � + �2�p . �26�

The change of gauge is nothing else but a similarity trans-
formation of the Hamiltonian and does not affect its eigen-
values, unless the gauge field itself contains topological
charges. If we choose a synchronized solution of Eq. �6� as
gauge field so that �0�r�=�0 is constant, Eq. �26� can be
written as

��� − �0�p = ���V� + 2� � �0 � + �2�p , �27�

where a non-Hermitian operator L=2���0� +�2 is per-
turbed by a diagonal disorder 
V�=−
 diag��� with strength

=��. Note that the constant function p0�r�=1 /
�M� is an
eigenfunction of L to the zero eigenvalue E0

0=0. This corre-
sponds to a constant phase shift from �0�r�—i.e., the syn-
chronization manifold for which we seek a perturbation ex-
pansion. Given orthonormal left and right eigenfunctions Pk
and pk of L and the corresponding eigenvalues Ek

0, the terms
in the perturbation series for the eigenvalue E0 with the larg-
est real part

��� − �0� = E0 = 
E0
�1� + 
2E0

�2� + O�
3� �28�

are found to be

E0
�1� = �P0

† · V�p0� ,

E0
�2� = − �

k�0

�P0
† · V�pk��Pk

† · V�p0�
Ek

0 . �29�

The discrimination between left and right eigenfunctions is
necessary because L is not Hermitian unless ��0=0. For
certain regular topologies and symmetric solutions �0, the
left and right eigenfunctions Pk=pk are identical, neverthe-
less �see Sec. IV�. In this case, we obtain the perturbation
terms for the synchronization frequency as

� = �0 + ���1� + �2��2� + O��3� , �30�

��1� = ���system, �31�

��2� = − �
1

�M� �k�0

�k
2

Ek
0 , �32�

with the spatial Fourier modes �k of the frequencies. This
result can directly be compared to Eqs. �7�, �19�, and �20�.
The first noticeable difference is that the unperturbed system
may have a synchronization frequency �0 which is different
from zero. The second difference is more subtle. The eigen-
values Ek

0 may have nonvanishing imaginary parts. This cor-
responds to oscillatory modes during the transient to syn-
chronization. Nevertheless, the sum, Eq. �32�, and
perturbation expansion, Eq. �30�, are real if eigenvalues and
eigenfunctions occur in complex conjugated pairs.

IV. EXAMPLES

A. Solution in a rectangular medium

In the following we are interested in applying these re-
sults to some simple topologies. In order to apply our pertur-

bation approach, the spectrum of the Laplacian has to be
calculated for every topology of interest. We start by exam-
ining a simple lattice. Let us consider a d-dimensional oscil-
latory medium Ld�Rd with periodic boundary conditions
and quenched random frequency disorder �see Fig. 2�. We
first note that a constant phase gradient ��0= 2�

L l, where l
= �l1 , . . . , ld� is a d-dimensional integer vector of winding
numbers, solves the homogeneous equation �23� with

�0 = ��2�

L
2

�l�2. �33�

Because of the periodic boundary conditions of the medium
and the phases �=�+2�, we can include topological
charges without phase singularities. The phase gradient is
bounded, and the use of the Kuramoto phase diffusion equa-
tion is justified. The unperturbed operator, Eq. �25�, reads

L = 2�
2�

L
l† � + �2, �34�

and the left and right eigenfunctions and eigenvalues that
fulfill the periodic boundary conditions coincide and are
simple harmonics

pk�r� = L−�d/2�ei�2�/L�k†·r, �35�

Lpk = �2�

L
2

�i2�l† · k − �k�2�pk = Ek
0pk. �36�

The vector k= �k1 , . . . ,kd� is also an integer vector, labeling
the Fourier modes in the various directions. Equation �32�
for the second-order correction of the synchronization fre-
quency shift gives

��2� = �L2−d 1

4�2 �
�k��0

�k�2

4�2�l† · k�2 + �k�4
�k

2 . �37�

This sum over the d-dimensional integer lattice is potentially
divergent depending on the small wavelength behavior of the
terms �k

2. Delta-correlated random frequencies lead to an ul-
traviolet divergence in dimensions d�1 larger than 1. We
therefore have to restrict the perturbation theory to cases
where nearby frequencies are correlated—for instance, as

E���r���r��� − E���2 = �2�2�−�d/2�e−��r − r��2/22� �38�

and  is some correlation length. Note that Eq. �38� can only
be an approximation for small correlation lengths compared
with the system size L, disregarding boundary effects. The
expected value of the Fourier coefficients for �k � �0 is then

E��k
2� = e−2��/L�2�k�2. �39�

Using this expression, one can calculate the expected
second-order perturbation terms in Eq. �37� numerically. An
exact analytical expression exists in the simplest case of d
=1, l=0, and delta-correlated frequencies with =0. Then
expression �37� becomes
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E���2�� = �L
1

2�2 �
k�0

1

k2 = �
L

12
, �40�

where we could use the property of the Riemann zeta func-
tion ��2�=�2 /6. In Fig. 1 we compare the shift of the syn-
chronization frequency due to heterogeneity for one-
dimensional systems with periodic boundary conditions,
different lengths, and winding numbers l. In order to observe
the second-order terms, the linear contribution to the fre-
quency shift must be exactly zero. This is achieved by shift-
ing the average frequencies to zero ���System=0 for each re-
alization. The second-order perturbation term is not affected
by this change into a co-rotating frame of reference. The
figure confirms the asymptotic behavior of the synchroniza-
tion frequency for ���1, and we find the scaling relation

� − �0 � ��2, �41�

as was previously observed in �16�.
The scaling of the second-order perturbation term with

system size L and correlation length  can be studied by
approximating the sum with a d-dimensional integral over
�k � �1:

E���2�� � �L2−d	
�k��1

�k�−2e−2��/L�2�k�2dk

� �L2−dx2−d��d − 2

2
,x2� with x =



L
�
2.

We have here omitted constant factors—for instance, from
the integration over the d-dimensional sphere shells �k �
=const or upper and lower bounds that allow the estimation
of the sum from an integral. Depending on the dimension d,
we can use different asymptotic scaling relations of the in-
complete � function in Eq. �42� for x→0—i.e., large system
sizes or small correlation lengths. We find

E���2�� � O�L� for d = 1,

E���2�� � O�ln�L


� for d = 2,

E���2�� � O�2−d� for d � 3. �42�

The analysis for a rectangular medium with no-flux or open-
boundary conditions gives analogous results, with the only
difference that no topological charges are possible—i.e., �l �
=0.

B. Solution on a sphere

Of special interest may be the synchronization frequency
of a heterogeneous, oscillatory, reaction-diffusion system on

(b)(a)

FIG. 2. Quasiregular wave patterns �a� in a rectangular medium
with periodic boundary conditions and �b� on the surface of a
sphere. We have used the discrete Kuramoto model, Eq. �5�, on �a�
a grid of 150�150 phase oscillators and �b� on an almost homoge-
neous discretization of the sphere surface with 20 480 points on the
faces of a triangular tessellation �25�. The natural frequencies of the
individual oscillators were independently uniformly distributed with
standard deviation �=0.2. The topology of the square lattice in �a�
is that of a 2-torus, and it is possible to have topological charges
without phase singularities �large phase differences�. We used an
initial condition with topological charges lx=3 and ly =7. Shown is
the sine of the phases in gray levels after a transient time to
synchronization.
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FIG. 1. �Color online� Influence of frequency disorder in a one-dimensional lattice. Plotted is the shift of the synchronization frequency
� from the frequency of the synchronized state with identical oscillators, �0, as a function of the oscillator heterogeneity �. We compare
simulations of the discrete Kuramoto model, Eq. �5�, for a chain of N oscillators with the second-order perturbation theory, Eq. �37�, with
L→N. Each data point from the simulations is an average value from 50 runs with different realizations of iid. random frequencies
�E��k

2�=1�, where for each realization the average frequency has been shifted to zero ���System=0. �a� Comparison of the results for a ring
of N=100 nonisochronous ��=0.25� phase oscillators, without topological charge �blue line and plus marks� and with a topological charge
of l=10 �red line and � marks�. �b� Comparison of rings of different sizes N=16 �red line and � marks� and N=100 �blue line and plus
marks� oscillators, but with the same nonisochronicity �=0.25 and topological charge l=3.
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the surface of a sphere as a model for catalytic surface reac-
tions on spherical bodies �see Fig. 2�. Unlike in the torus
topology of a rectangular medium with periodic boundary
conditions, on the sphere topological charges always occur in
vortex pairs of opposite charge. The method of phase reduc-
tion is not applicable in the vicinity of such phase singulari-
ties, which act as fast pacemakers for the system �1�. We will
therefore only study perturbations of the homogeneous syn-
chronized solution �0=0. The eigenfunctions of the Laplac-
ian on a sphere of radius R are spherical harmonics Ylm:

plm =
1

R
Ylm with l = 0,1, . . . and m = − l, . . . ,l ,

�2plm = −
1

R2 l�l + 1�plm. �43�

If we assume a homogeneous, isotropic distribution of fre-
quencies on the sphere, the frequency correlator has the form

E���r���r��� − E���2 =
1

R2�
l=0

�

cl �
m=−l

l

Ylm�r�Ylm�r�� �44�

and we find the expected values of the spherical harmonics
spectrum of the quenched frequency disorder as

E��lm
2 � = cl. �45�

If the frequencies ��r� are 	 correlated, all coefficients cl
with l�0 are equal to 1 and the sums

E���2�� = �
l=1

�

cl
2l + 1

l�l + 1�
�46�

are divergent. We, therefore, have to assume a cutoff at a
wave number lmax�R /, where  is a correlation length.
This cutoff can be sharp or exponential, as in the previous
example, and we obtain again a relation
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FIG. 3. �Color online� Synchronization analysis in a one-dimensional chain of N=200 nonidentical Kuramoto phase oscillators with two
competing pacemakers regions according to Eq. �48�. �b� Frequency values −�n corresponding to the potential of the discrete Hamiltonian
�values �n are shifted so that the mean ���System=0 is exactly zero�. There are two potential wells at which the ground state can be localized,
a deeper well on the left and a shallower but broader well on the right. �a� and �c� Largest eigenvalues �solid blue lines� of the negative
Hamiltonian −H in dependence on the heterogeneity �, the second-order perturbation approximation �Eq. �29�, dashed red line�, and the
value �cr for which the ground state becomes quasidegenerate �dashed black line�. The quality of the approximation can be seen in
double-logarithmic scales in �c�. �d�–�f� Numerically determined ground-state eigenvectors in a semilogarithmic scale for �d� �=0.03, �e�
�=�cr=0.036917 near the point of quasidegeneracy, and �f� �=0.04. Exponential localization at a potential well corresponds to concentric
waves around this pacemaker region in the Kuramoto phase- diffusion equations �15,16�.
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E���2�� � O�ln�R


� . �47�

V. FAILURE OF PERTURBATION THEORY

The approach to the synchronization problem based on
Schrödinger perturbation theory has another, conceptual ad-
vantage. Upon the variation of a system parameter, the ei-
genvalues of a Hamiltonian can become degenerate or
quasidegenerate. The perturbation theory of finite order must
fail before such a point. This effect is illustrated in Fig. 3,
which investigates the difference equation

Ekpn = ��npn + pn−1 − 2pn + pn+1, �48�

an approximation of Eq. �22� with �=1 on a one-
dimensional lattice and with open boundary conditions. Two

pacemaker regions of different size and natural frequency are
competing as wave centers. For low natural frequencies the
larger and slower pacemaker region is dominating. By in-
creasing both frequencies by a common factor �, the smaller
and faster region gains advantage. Two centers of waves can
coexist in a small neighborhood around a critical value �cr.
Since the ground state of a one-dimensional Schrödinger
equation cannot be degenerate for a potential with finite
square integral norm, the largest and second largest eigenval-
ues never coincide. The levels can come exponentially close
depending on the distance between the two potential wells.
While the location of the dominating wave center shifts
quickly upon variation of �, the transient time until domi-
nance is established scales as �E0−E1�−1. In practice, since
close to the critical parameter value only transient behavior
can be observed, one cannot say how far the boundary of the
concentric waves will shift in either direction. The same tran-
sition can occur in a heterogeneous system with random fre-
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FIG. 4. �Color online� Synchronization analysis in a one-dimensional chain of N=200 nonidentical Kuramoto phase oscillators according
to Eq. �48� and independent, identically, uniformly distributed random frequencies �n �values are shifted so that the mean ���System=0 is
exactly zero�. �b� Frequency values −�n corresponding to the potential of the discrete Hamiltonian �solid blue line� and a Gaussian filtering
of width 2 �bold red line�. There are several potential regions at which the ground state could be localized. �a� and �c� Largest eigenvalues
�solid blue lines� of the negative Hamiltonian −H in dependence on the heterogeneity �, the second-order perturbation approximation �Eq.
�29�, dashed red line�, and the value �cr for which the ground state becomes quasidegenerate �dashed black line�. The quality of the
approximation can be seen in double-logarithmic scales in �c�. �d�–�f� Numerically determined ground-state eigenvectors in a semilogarith-
mic scale for �d� �=0.04, �e� �=�cr=0.065135 near the point of quasidegeneracy, and �f� �=0.07. Exponential localization at a potential
well corresponds to concentric waves around this pacemaker region in the Kuramoto phase-diffusion equations �15,16�.
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quencies as illustrated in Figs. 4 and 5. The question where
the pacemaker region of a heterogeneous oscillatory medium
is located given the local frequencies ��r� cannot easily be
answered without fully solving Eq. �26� numerically.

We want to stress once more that the presented perturba-
tion approach only describes the asymptotic changes of the
stable synchronization manifold for small heterogeneities
and in one or two dimensions only for finite systems. If the
phase gradient of the formal synchronized solution of the
KPDE �6� becomes too large, the reduction to a phase model
is not valid anymore. Therefore this theory cannot describe
the transition to desynchronized clusters �20� or spiral turbu-
lence which can occur in oscillatory media �1�. If the per-
turbed state of phase synchronization exists, however, it is
reached from homogeneous initial conditions.

VI. DISCUSSION

In our study we have investigated the nonlinear Kuramoto
phase-diffusion equation in synchronization. We have ap-
plied perturbation theory to calculate the synchronized state
in a heterogeneous oscillatory medium. We have presented
explicit analytical results regarding the oscillation frequency
and the phase profile in such a system. Further we have
identified different scaling relations depending on the system
size and dimension and the frequency correlation length. We
have shown that the perturbation approach can straightfor-
wardly be applied to simple topologies.

The first two terms of the perturbation series, Eqs.
�30�–�32�, are intuitively quite meaningful. If a medium with
random frequencies synchronizes to a common synchroniza-
tion frequency �, then one expects it to be close to the mean
frequency in the system. But this is exactly the first-order
perturbation term. Any deviation from the mean frequency is
due to the nonlinearity �, which appears as a factor only for
higher-order perturbation terms.

Solutions of the Schrödinger equation in disordered media
are known to exhibit localization transitions �21,22�, depend-
ing on the system dimension and the strength of the disorder.
Given Eq. �22� and the properties of the disordered potential,
all the results from condensed matter physics �22–24� deal-
ing with the localized states in the impurity band, and in
particular the ground state, can in principle be applied. One
of the results is that in one and two dimensions all states are
localized. It is straightforward to show that in the limit of
infinite system size perturbation theory does, in fact, not
work for localized states �cf. the one-dimensional 	 poten-
tial�. However, a perturbation ansatz is justified for states
with a localization length larger than the system size. We
have shown in the examples that the perturbation terms scale
and diverge with the system size in one- and two-
dimensional media. The result, Eq. �42�, suggests that d=2 is
the critical dimension for the scaling of the synchronization
frequency with system size and frequency correlation length.
In one and two dimensions our perturbation theory only
gives good quantitative predictions for finite systems. In
higher dimensions the synchronization frequency exists in
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FIG. 5. �Color online� Synchronization analysis in a one-dimensional chain of N=200 nonidentical Kuramoto phase oscillators with
periodic boundary conditions and independent, identically distributed normal random frequencies �n �values are shifted so that the mean
���System=0 is exactly zero�. The topological charge is l=4. �a� Three largest eigenvalue real parts ReE0�ReE1�ReE1 of the difference
operator in Eq. �48� under variation of the heterogeneity �. The second and third eigenvalues in this example are complex conjugated for
��0.09, and the ground state becomes quasidegenerate for �cr�0.154. �b� Unperturbed ��=0� rotating wave solution on a ring of
oscillators, here as the sine of the phase �in gray levels� on the side of a cylinder for illustration. �c�, �d� Stationary phase profiles of the
corresponding discrete KPE �Eq. �5�, blue lines� for �=0.15 and �=0.16, respectively, and the dashed black line is the unperturbed constant
phase gradient.
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the thermodynamical limit, but it scales with the correlation
length  of the frequencies as 2−d.

The two presented perturbation approaches are equivalent
in the sense that they lead to the same expressions for the
perturbation terms, but when applied to a specific realization
of frequencies it can be of advantage to choose one approach
over the other. By reducing the nonlinear KPDE in synchro-
nization to an eigenvalue problem, one can find the ground-
state energy and the corresponding phase profile in the dis-
cretized system to arbitrary order precision using linear
algebra methods. Special attention must be given if the phase
profile spans phase differences over several decades—i.e.,
when the system size is large compared to the wavelength.
Then the exponentially localized ground state must be com-

puted to high precision even in the regions where it is several
hundred orders of magnitudes smaller than at the localization
point. For small nonlinearity � this second approach has no
advantage over using the perturbation method, Eqs. �10�,
�13�, and �16�, on the KPDE directly. In particular, the non-
linear Cole-Hopf transformation �21� introduces additional
numerical errors.
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